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Unit-III 

Mining Frequent Patterns, Associations, and Correlations: Basic Concepts 

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that appear 

frequently in a data set. For example, a set of items, such as milk and bread, that appear 

frequently together in a transaction data set is a frequent itemset. 

A subsequence, such as buying first a PC, then a digital camera, and then a memory card, if it 

occurs frequently in a shopping history database, is a (frequent) sequential pattern. A 

substructure can refer to different structural forms, such as subgraphs, subtrees, or sublattices, 

which may be combined with itemsets or subsequences. If a substructure occurs frequently, it is 

called a (frequent) structured pattern. Finding frequent patterns plays an essential role in mining 

associations, correlations, and many other interesting relationships among data. 

 

Market Basket Analysis: A Motivating Example 

A typical example of frequent itemset mining is market basket analysis. This process analyzes 

customer buying habits by finding associations between the different items that customers place 

in their “shopping baskets” (Figure 6.1). The discovery of these associations can help retailers 

develop marketing strategies by gaining insight into which items are frequently purchased 

together by customers. For instance, if customers are buying milk, how likely are they to also 

buy bread (and what kind of bread) on the same trip to the supermarket? This information can 

lead to increased sales by helping retailers do selective marketing and plan their shelf space. 

 

 
 

“Which groups or sets of items are customers likely to purchase on a given trip to the store?” 

To answer your question, market basket analysis may be performed on the retail data of customer 

transactions at your store. You can then use the results to plan marketing or advertising 

strategies, or in the design of a new catalog. 
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patterns can be represented in the form of association rules. For example, the information that 

customers who purchase computers also tend to buy antivirus software at the same time is 

represented in the following association rule: 

 
Rule support and confidence are two measures of rule interestingness. They respectively reflect 

the usefulness and certainty of discovered rules. A support of 2% for above Rule means that 2% 

of all the transactions under analysis show that computer and antivirus software are purchased 

together. A confidence of 60% means that 60% of the customers who purchased a computer also 

bought the software. Typically, association rules are considered interesting if they satisfy both a 

minimum support threshold and a minimum confidence threshold. These thresholds can be a 

set by users or domain experts. 

 

Frequent Itemsets, Closed Itemsets, and Association Rules 

 

 
Rules that satisfy both a minimum support threshold (min sup) and a minimum confidence 

threshold (min conf ) are called strong. 

A set of items is referred to as an itemset. An itemset that contains k items is a k-itemset. The set 

fcomputer, antivirus softwareg is a 2-itemset. The occurrence frequency of an itemset is the 

number of transactions that contain the itemset. This is also known, simply, as the frequency, 

support count, or count of the itemset. 

 

 
In general, association rule mining can be viewed as a two-step process: 

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as 

frequently as a predetermined minimum support count, min sup. 

2. Generate strong association rules from the frequent itemsets: By definition, these rules 

must satisfy minimum support and minimum confidence. 

 

An itemset X is closed in a data set D if there exists no proper super-itemset Y such that Y has the 

same support count as X inD. An itemset X is a closed frequent itemset in set D if X is both 

closed and frequent in D. An itemset X is a maximal frequent itemset (or max-itemset) in a 

data set D if X is frequent, and there exists no super-itemset Y such that X _ Y and Y is frequent in 

D. 

 

Example. Closed and maximal frequent itemsets. Suppose that a transaction database has only 

two transactions: {a1, a2, : : : , a100}; {a1, a2, : : : , a50}. Let the minimum support count 

threshold be min sup = 1. We find two closed frequent itemsets and their support counts, that is, 

C={{a1, a2, : : : , a100} : 1; {a1, a2, : : : , a50} : 2}. There is only one maximal frequent 

itemset: M={{a1, a2, : : : , a100} : 1}. Notice that we cannot include {a1, a2, : : : , a50} as a 

maximal frequent itemset because it has a frequent superset, {a1, a2, : : : , a100}. Compare this 
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to the preceding where we determined that there are 2100 -1 frequent itemsets, which are too 

many to be enumerated! 

The set of closed frequent itemsets contains complete information regarding the frequent 

itemsets. For example, from C, we can derive, say, (1) {a2, a45 : 2} since {a2, a45} is a sub-

itemset of the itemset {a1, a2, … , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55} is not a sub-

itemset of the previous itemset but of the itemset {a1, a2, : : : , a100 : 1}. However, from the 

maximal frequent itemset, we can only assert that both itemsets ({a2, a45} and {a8, a55}) are 

frequent, but we cannot assert their actual support counts. 

 

Frequent Itemset Mining Methods 

Apriori Algorithm: Finding Frequent Itemsets by Confined Candidate Generation 

 

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining 

frequent itemsets for Boolean association rules [AS94b]. The name of the algorithm is based on 

the fact that the algorithm uses prior knowledge of frequent itemset properties, as we shall see 

later. Apriori employs an iterative approach known as a level-wise search, where k-itemsets are 

used to explore (k +1)- itemsets. First, the set of frequent 1-itemsets is found by scanning the 

database to accumulate the count for each item, and collecting those items that satisfy minimum 

support. The resulting set is denoted by L1. Next, L1 is used to find L2, the set of frequent 2-

itemsets, which is used to find L3, and so on, until no more frequent k-itemsets can be found. The 

finding of each Lk requires one full scan of the database. 

To improve the efficiency of the level-wise generation of frequent itemsets, an important 

property called the Apriori property is used to reduce the search space. 

 

Apriori property: All nonempty subsets of a frequent itemset must also be frequent. 

 

“How is the Apriori property used in the algorithm?” 

A two-step process is followed, consisting of join and prune actions. 

1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 with 

itself. This set of candidates is denoted Ck. Let l1 and l2 be itemsets in Lk-1. The notation li[j] 

refers to the jth item in li (e.g., l1[k -2] refers to the second to the last item in l1). For efficient 

implementation, Apriori assumes that items within a transaction or itemset are sorted in 

lexicographic order. For the (k -1)-itemset, li , this means that the items are sorted such that li[1] 

< li[2] <  …… < li[k -1]. The join, Lk-1  Lk-1, is performed, where members of Lk-1 are 

joinable if their first (k -2) items are in common. That is, members l1 and l2 of Lk-1 are joined if 

(l1[1] = l2[1]) (l1[2] = l2[2]) … (l1[k -2] = l2[k -2]) (l1[k -1] < l2[k -1]). The condition 

l1[k -1] < l2[k -1] simply ensures that no duplicates are generated. The resulting itemset formed 

by joining l1 and l2 is { l1[1], l1[2], …. , l1[k -2], l1[k -1], l2[k -1]}. 

 

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be frequent, but 

all of the frequent k-itemsets are included in Ck. A database scan to determine the count of each 

candidate in Ck would result in the determination of Lk (i.e., all candidates having a count no less 

than the minimum support count are frequent by definition, and therefore belong to Lk). Ck, 

however, can be huge, and so this could involve heavy computation. To reduce the size of Ck, 

the Apriori property is used as follows. Any .(k-1)-itemset that is not frequent cannot be a subset 

akkin
Highlight

akkin
Highlight

akkin
Highlight



Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei 
   4 
 

of a frequent k-itemset. Hence, if any (k -1)-subset of a candidate k-itemset is not in Lk-1, then 

the candidate cannot be frequent either and so can be removed from Ck. This subset testing can 

be done quickly by maintaining a hash tree of all frequent itemsets. 

 

 
Example 6.3 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction 

database, D, of Table 6.1. There are nine transactions in this database, that is, |D| = 9. We use 

Figure 6.2 to illustrate the Apriori algorithm for finding frequent itemsets in D. 

1. In the first iteration of the algorithm, each item is a member of the set of candidate 1-itemsets, 

C1. The algorithm simply scans all of the transactions to count the number of occurrences of 

each item. 

2. Suppose that the minimum support count required is 2, that is, min sup = 2. (Here, we are 

referring to absolute support because we are using a support count. The corresponding relative 

support is 2/9 = 22%.) The set of frequent 1-itemsets, L1, can then be determined. It consists of 

the candidate 1-itemsets satisfying minimum support. In our example, all of the candidates in C1 

satisfy minimum support. 

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1  L1 to 

generate a candidate set of 2-itemsets, C2. C2 consists of (|L1|C2) 2-itemsets. Note that no 

candidates are removed from C2 during the prune step because each subset of the candidates is 

also frequent. 

4. Next, the transactions in D are scanned and the support count of each candidate itemset in C2 

is accumulated, as shown in the middle table of the second row in Figure 6.2. 

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate 2-itemsets 

in C2 having minimum support. 

6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Figure 6.3. From the 

join step, we first get C3 =L2  L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5},{I2, I3, I4}, {I2, I3, 

I5}, {I2, I4, I5}}. 
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(a) Join: C3 = L2  L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}} {{I1, 

I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}} = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5},{I2, I3, 

I4}, {I2, I3, I5}, {I2, I4, I5}}. 

 

(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be 

frequent. Do any of the candidates have a subset that is not frequent? 

 

Generation and pruning of Candidate 3-itemsets, C3, from L2 using the apriori property. 

 

The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets of {I1, 

I2, I3} are members of L2. Therefore, keep {I1, I2, I3} in C3. 

The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of {I1, 

I2, I5} are members of L2. Therefore, keep {I1, I2, I5} in C3. 

The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not a member of 

L2, and so it is not frequent. Therefore, remove {I1, I3, I5} from C3. 

The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a member of 

L2, and so it is not frequent. Therefore, remove {I2, I3, I4} from C3. 

The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not a member of 

L2, and so it is not frequent. Therefore, remove {I2, I3, I5} from C3. 

The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a member of 

L2, and so it is not frequent. Therefore, remove {I2, I4, I5} from C3. 

(c) Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning. 
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7. The transactions in D are scanned to determine L3, consisting of those candidate 3-itemsets in 

C3 having minimum support (Figure 6.2). 

8. The algorithm uses L3 1 L3 to generate a candidate set of 4-itemsets, C4. Although the join 

results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset {I2, I3, I5} is not 

frequent. Thus, C4 = , and the algorithm terminates, having found all of the frequent itemsets. 
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Generating Association Rules from Frequent Itemsets 

Based on this equation, association rules can be generated as follows: 

 

 
Because the rules are generated from frequent itemsets, each one automatically satisfies the 

minimum support. Frequent itemsets can be stored ahead of time in hash tables along with their 

counts so that they can be accessed quickly. 

 

Example 6.4 Generating association rules. Let’s try an example based on the transactional data 

for AllElectronics shown before in Table 6.1. The data contain frequent itemset X = {I1, 

I2,I5}.What are the association rules that can be generated from X? The nonempty subsets of X 
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are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}. The resulting association rules are as shown 

below, each listed with its confidence: 

 
If the minimum confidence threshold is, say, 70%, then only the second, third, and last rules are 

output, because these are the only ones generated that are strong. 

 

Improving the Efficiency of Apriori 

“How can we further improve the efficiency of Apriori-based mining?” 

Many variations of the Apriori algorithm have been proposed that focus on improving the 

efficiency of the original algorithm. They are as follows 

 

Hash-based technique (hashing itemsets into corresponding buckets): A hash-based technique 

can be used to reduce the size of the candidate k-itemsets, Ck, for k > 1. For example, when 

scanning each transaction in the database to generate the frequent 1-itemsets, L1, we can 

generate all the 2-itemsets for each transaction, hash (i.e., map) them into the different buckets of 

a hash table structure, and increase the corresponding bucket counts. A 2-itemset with a 

corresponding bucket count in the hash table that is below the support threshold cannot be 

frequent and thus should be removed from the candidate set. 

 
Transaction reduction (reducing the number of transactions scanned in future iterations): A 

transaction that does not contain any frequent k-itemsets cannot contain any frequent (k C1)-

itemsets. Therefore, such a transaction can be marked or removed from further consideration 

because subsequent database scans for j-itemsets, where j > k, will not need to consider such a 

transaction. 

 

Partitioning (partitioning the data to find candidate itemsets): A partitioning technique can be 

used that requires just two database scans to mine the frequent itemsets (Figure 6.6). It consists 
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of two phases. In phase I, the algorithm divides the transactions of D into n nonoverlapping 

partitions. 

In phase II, a second scan of D is conducted in which the actual support of each candidate is 

assessed to determine the global frequent itemsets. Partition size and the number of partitions are 

set so that each partition can fit into main memory and therefore be read only once in each phase. 

 
Sampling (mining on a subset of the given data): The basic idea of the sampling approach is to 

pick a random sample S of the given data D, and then search for frequent itemsets in S instead of 

D. 

 

Dynamic itemset counting (adding candidate itemsets at different points during a scan): A 

dynamic itemset counting technique was proposed in which the database is partitioned into 

blocks marked by start points. In this variation, new candidate itemsets can be added at any start 

point, unlike in Apriori, which determines new candidate itemsets only immediately before each 

complete database scan. 

 

A Pattern-Growth Approach for Mining Frequent Itemsets 

“Can we design a method that mines the complete set of frequent itemsets without such a costly 

candidate generation process?” An interesting method in this attempt is called frequent pattern 

growth, or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it 

compresses the database representing frequent items into a frequent pattern tree, or FP-tree, 

which retains the itemset association information. 

 

Example 6.5 FP-growth (finding frequent itemsets without candidate generation). We 

reexamine the mining of transaction database, D, of Table 6.1 in Example 6.3 using the frequent 

pattern growth approach. 

The first scan of the database is the same as Apriori, which derives the set of frequent items (1-

itemsets) and their support counts (frequencies). Let the minimum support count be 2. Thus, we 

have L = {{I2: 7}, {I1: 6}, {I3: 6}, {I4: 2}, {I5: 2}}. An FP-tree is then constructed as follows. 

First, create the root of the tree, labeled with “null.” Scan database D a second time. The items in 

each transaction are processed in L order (i.e., sorted according to descending support count), 

and a branch is created for each transaction. For example, the scan of the first transaction, “T100: 

I1, I2, I5,” which contains three items (I2, I1, I5 in L order), leads to the construction of the first 

branch of the tree with three nodes, <I2: 1>, <I1: 1>, and <I5: 1>, where I2 is linked as a child to 
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the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200, contains the 

items I2 and I4 in L order, which would result in a branch where I2 is linked to the root and I4 is 

linked to I2. However, this branch would share a common prefix, I2, with the existing path for 

T100. Therefore, we instead increment the count of the I2 node by 1, and create a new node, <I4: 

1>, which is linked as a child to <I2: 2>. In general, when considering the branch to be added for 

a transaction, the count of each node along a common prefix is incremented by 1, and nodes for 

the items following the prefix are created and linked accordingly. 

 
Mining Frequent Itemsets Using the Vertical Data Format 

Both the Apriori and FP-growth methods mine frequent patterns from a set of transactions in 

TID-itemset format (i.e., {TID : itemset}), where TID is a transaction ID and itemset is the set of 

items bought in transaction TID. This is known as the horizontal data format. Alternatively, 

data can be presented in item-TID set format (i.e., {item : TID set}), where item is an item name, 

and TID set is the set of transaction identifiers containing the item. This is known as the vertical 

data format [Eclat (Equivalence Class Transformation) algorithm]. 

 

Example 6.6 Mining frequent itemsets using the vertical data format. Consider the 

horizontal data format of the transaction database, D, of Table 6.1 in Example 6.3. This can be 

transformed into the vertical data format shown in Table 6.3 by scanning the data set once. 

 

Mining can be performed on this data set by intersecting the TID sets of every pair of frequent 

single items. The minimum support count is 2. Because every single item is frequent in Table 

6.3, there are 10 intersections performed in total, which lead to eight nonempty 2-itemsets, as 

shown in Table 6.4. Notice that because the itemsets {I1, I4} and {I3, I5} each contain only one 

transaction, they do not belong to the set of frequent 2-itemsets. Based on the Apriori property, a 

given 3-itemset is a candidate 3-itemset only if every one of its 2-itemset subsets is frequent. The 

candidate generation process here will generate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. 

By intersecting the TID sets of any two corresponding 2-itemsets of these candidate 3-itemsets, it 

derives only two frequent 3-itemsets: {I1, I2, I3: 2} and {I1, I2, I5: 2}. 
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Mining Closed and Max Patterns 

“How can we mine closed frequent itemsets?” 

A naïve approach would be to first mine the complete set of frequent itemsets and then remove 

every frequent itemset that is a proper subset of, and carries the same support as, an existing 

frequent itemset. However, this is quite costly. 

A recommended methodology is to search for closed frequent itemsets directly during the mining 

process. This requires us to prune the search space as soon as we can identify the case of closed 

itemsets during mining. Pruning strategies include the following: 

1. Itemmerging. 

2. Sub-itemset pruning. 

3. Item skipping. 
 

1. Itemmerging: If every transaction containing a frequent itemset X also contains an 

itemset Y but not any proper superset of Y, then X Y forms a frequent closed itemset 

and there is no need to search for any itemset containing X but no Y. 

For example, in Table 6.2 of Example 6.5, the projected conditional database for prefix 

itemset {I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its 

transactions contains itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2, I1} 

can be merged with {I5} to form the closed itemset, {I5, I2, I1: 2}, and we do not need to 

mine for closed itemsets that contain I5 but not {I2, I1}. 
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2. Sub-itemset pruning: If a frequent itemset X is a proper subset of an already found 

frequent closed itemset Y and support count(X) = support count(Y), then X and all of X’s 

descendants in the set enumeration tree cannot be frequent closed itemsets and thus can 

be pruned. 

suppose a transaction database has only two transactions: {(a1, a2, : : : , a100), (a1, a2, : 

: : , a50)}, and the minimum support count is min sup = 2. The projection on the first 

item, a1, derives the frequent itemset, {a1, a2, : : : , a50 : 2}, based on the itemset 

merging optimization. Because support({a2}) = support({a1, a2, : : : , a50}) = 2, and 

{a2} is a proper subset of {a1, a2, : : : , a50}, there is no need to examine a2 and its 

projected database. Similar pruning can be done for a3,….. , a50 as well. Thus, the 

mining of closed frequent itemsets in this data set terminates after mining a1’s projected 

database. 

3. Item skipping: In the depth-first mining of closed itemsets, at each level, there will be a 

prefix itemset X associated with a header table and a projected database. If a local 

frequent item p has the same support in several header tables at different levels, we can 

safely prune p from the header tables at higher levels. 

Consider, for example, the previous transaction database having only two transactions: 

{(a1, a2, : : : , a100), (a1, a2, : : : , a50)}, where min sup = 2. Because a2 in a1’s 

projected database has the same support as a2 in the global header table, a2 can be 

pruned from the global header table. Similar pruning can be done for a3, …. , a50. There 

is no need to mine anything more after mining a1’s projected database. 

 

Which Patterns Are Interesting?—Pattern Evaluation Methods 

a major bottleneck association rule mining. many of the rules generated are still not 

interesting to the users. Unfortunately, this is especially true when mining at low support 

thresholds or mining for long patterns. 

 

Strong Rules Are Not Necessarily Interesting 

“How can we tell which strong association rules are really interesting?” 

 

Example 6.7 A misleading “strong” association rule. Suppose we are interested in analyzing 

transactions at AllElectronics with respect to the purchase of computer games and videos. Let 

game refer to the transactions containing computer games, and video refer to those containing 

videos. Of the 10,000 transactions analyzed, the data show that 6000 of the customer transactions 

included computer games, while 7500 included videos, and 4000 included both computer games 

and videos. Suppose that a data mining program for discovering association rules is run on the 

data, using a minimum support of, say, 30% and a minimum confidence of 60%. The following 

association rule is discovered: 

 

 
It is a strong association rule and would therefore be reported, since its support value of 

4000/10,000 = 40% and confidence value of 4000/6000 = 66% satisfy the minimum support and 

minimum confidence thresholds, respectively. However, this rule is misleading because the 
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probability of purchasing videos is 75%, which is even larger than 66%. In fact, computer games 

and videos are negatively associated because the purchase of one of these items actually 

decreases the likelihood of purchasing the other. 

the confidence of a rule A)B can be deceiving. It does not measure the real strength (or lack of 

strength) of the correlation and implication between A and B. 

From Association Analysis to Correlation Analysis 

To tackle this weakness, a correlation measure can be used to augment the support–confidence 

framework for association rules.This leads to correlation rules of the form 

 
That is, a correlation rule is measured not only by its support and confidence but also by the 

correlation between itemsets A and B. 

Lift is a simple correlation measure that is given as follows. The occurrence of itemset A is 

independent of the occurrence of itemset B if  ; otherwise, itemsets A and B 

are dependent and correlated as events. This definition can easily be extended to more than two 

itemsets. The lift between the occurrence of A and B can be measured by computing 

 
If the resulting value of lift is less than 1, then the occurrence of A is negativelycorrelated with 

the occurrence of B, meaning that the occurrence of one likely leads to the absence of the other 

one. If the resulting value is greater than 1, then A and B are positively correlated, meaning that 

the occurrence of one implies the occurrence of the other. If the resulting value is equal to 1, then 

A and B are independent and there is no correlation between them. 

In other words, lift assesses the degree to which the occurrence of one “lifts” the occurrence of 

the other. 

 

Example 6.8 Correlation analysis using lift. 

From the table, we can see that the probability of purchasing a computer game is P.({game}) = 

0.60, the probability of purchasing a video is P({video}) = 0.75, and the probability of 

purchasing both is P({game, video})= 0.40. By Eq. lift, the lift of given Association rule is 

P({game, video})/(P({game}) *P.({video})) = 0.40/(0.60*0.75) = 0.89. Because this value is less 

than 1, there is a negative correlation between the occurrence of {game} and {video}. 

The second correlation measure that we study is the  measure 
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Example 6.9 Correlation analysis using . To compute the correlation using  analysis for 

nominal data, we need the observed value and expected value (displayed in parenthesis) for each 

slot of the contingency table, as shown in Table 6.7. From the table, we can compute the  

value as follows: 

 

Because the  value is greater than 1, and the observed value of the slot (game, video) = 4000, 

which is less than the expected value of 4500, buying game and buying video are negatively 

correlated. 

 

A Comparison of Pattern Evaluation Measures 

 

How effective are the measures above discussed so far? Should we also consider other 

alternatives? 

Yes- four such measures: all confidence, max confidence, Kulczynski, and cosine. 

all confidence: Given two itemsets, A and B, the all confidence measure of A and B is defined as 

 
where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. 
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max confidence: Given two itemsets, A and B, the max confidence measure of A and B is 

defined as 

 
The max conf measure is the maximum confidence of the two association rules, 

 
Kulczynski: Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as 

Kulc) is defined as 

 
It can be viewed as an average of two confidence measures. That is, it is the average of two 

conditional probabilities: the probability of itemset B given itemset A, and the probability of 

itemset A given itemset B. 

 

Cosine: Finally, given two itemsets, A and B, the cosine measure of A and B is defined as 

 
The cosine measure can be viewed as a harmonized lift measure: The two formulae are similar 

except that for cosine, the square root is taken on the product of the probabilities of A and B. 

“Which is the best in assessing the discovered pattern relationships?” 

To answer this question, consider the following example 

 
Comparison of six pattern evaluation measures on typical data sets. The relationships 

between the purchases of two items, milk and coffee, can be examined by summarizing their 

purchase history in Table 6.8, a 2_2 contingency table, where an entry such as mc represents the 

number of transactions containing both milk and coffee. 

Table 6.9 shows a set of transactional data sets with their corresponding contingency tables and 

the associated values for each of the six evaluation measures. 

Kulc in conjunction with the imbalance ratio(IR) is best, among the given, to present pattern 

relationships among itemsets.. 
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Pattern Mining in Multilevel, Multidimensional Space. 

Mining Multilevel Associations 

For many applications, strong associations discovered at high abstraction levels, though with 

high support, could be commonsense knowledge. We may want to drill down to find novel 

patterns at more detailed levels. 

Example 7.1 Miningmultilevel association rules. A concept hierarchy defines a sequence of 

mappings from a set of low-level concepts to a higher-level, more general concept set. Data can 

be generalized by replacing low-level concepts within the data by their corresponding higher-

level concepts, or ancestors, from a concept hierarchy. 

 
Figure 7.2’s concept hierarchy has five levels, respectively referred to as levels 0 through 4, 

starting with level 0 at the root node for all (the most general abstraction level). Here, level 1 

includes computer, software, printer and camera, and computer accessory; level 2 includes 

laptop computer, desktop computer, office software, antivirus software, etc.; and level 3 includes 

Dell desktop computer, . . . ,Microsoft office software, etc. Level 4 is the most specific 

abstraction level of this hierarchy. It consists of the raw data values. 
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The items in Table 7.1 are at the lowest level of Figure 7.2’s concept hierarchy. It is difficult to 

find interesting purchase patterns in such raw or primitive-level data. For instance, if “Dell 

Studio XPS 16 Notebook” or “Logitech VX Nano Cordless Laser Mouse” occurs in a very small 

fraction of the transactions, then it can be difficult to find strong associations involving these 

specific items. Few people may buy these items together, making it unlikely that the itemset will 

satisfy minimum support. However, we would expect that it is easier to find strong associations 

between generalized abstractions of these items, such as between “Dell Notebook” and “Cordless 

Mouse.” 

Association rules generated from mining data at multiple abstraction levels are called multiple-

level or multilevel association rules. Multilevel association rules can be mined efficiently using 

concept hierarchies under a support-confidence framework. In general, a top-down strategy is 

employed, where counts are accumulated for the calculation of frequent itemsets at each concept 

level, starting at concept level 1 and working downward in the hierarchy toward the more 

specific concept levels, until no more frequent itemsets can be found. For each level, any 

algorithm for discovering frequent itemsets may be used, such as Apriori or its variations. 

A number of variations to this approach are described next, where each variation involves 

“playing” with the support threshold in a slightly different way. The variations are 

Using uniform minimum support for all levels (referred to as uniform support): The same 

minimum support threshold is used when mining at each abstraction level. For example, in 

Figure 7.3, a minimum support threshold of 5% is used throughout (e.g., for mining 

from“computer” downward to “laptop computer”). Both “computer” and “laptop computer” are 

found to be frequent, whereas “desktop computer” is not. When a uniform minimum support 

threshold is used, the search procedure is simplified. The method is also simple in that users are 

required to specify only one minimum support threshold. 
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The uniform support approach, however, has some drawbacks. It is unlikely that items at lower 

abstraction levels will occur as frequently as those at higher abstraction levels. If the minimum 

support threshold is set too high, it could miss some meaningful associations occurring at low 

abstraction levels. If the threshold is set too low, it may generate many uninteresting associations 

occurring at high abstraction levels. 

Using reduced minimum support at lower levels (referred to as reduced support): Each 

abstraction level has its own minimum support threshold. The deeper the abstraction level, the 

smaller the corresponding threshold. For example, in Figure 7.4, the minimum support thresholds 

for levels 1 and 2 are 5% and 3%, respectively. 

Using item or group-based minimum support (referred to as group-based support): it is 

sometimes more desirable to set up user-specific, item, or group-based minimal support 

thresholds when mining multilevel rules. 

For mining patterns with mixed items from groups with different support thresholds, usually the 

lowest support threshold among all the participating groups is taken as the support threshold in 

mining. 

 

A serious side effect of mining multilevel association rules is its generation of many redundant 

rules across multiple abstraction levels due to the “ancestor” relationships among items. For 

example, consider the following rules where “laptop computer” is an ancestor of “Dell laptop 

computer” based on the concept hierarchy of Figure 7.2, and where X is a variable representing 

customers who purchased items in AllElectronics transactions. 
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“If Rules (7.4) and (7.5) are both mined, then how useful is Rule (7.5)? Does it really provide 

any novel information?” If the latter, less general rule does not provide new information, then it 

should be removed. Let’s look at how this may be determined. A rule R1 is an ancestor of a rule 

R2, if R1 can be obtained by replacing the items in R2 by their ancestors in a concept hierarchy. 

For example, Rule (7.4) is an ancestor of Rule (7.5) because “laptop computer” is an ancestor of 

“Dell laptop computer.” Based on this definition, a rule can be considered redundant if its 

support and confidence are close to their “expected” values, based on an ancestor of the rule. 

 

Mining Multidimensional Associations 

So far, we have studied association rules that imply a single predicate, that is, the predicate buys. 

For instance, in mining our AllElectronics database, we may discover the Boolean association 

rule 

 
Hence, we can refer to Rule (7.6) as a singledimensional or intradimensional association rule 

because it contains a single distinct predicate (e.g., buys) with multiple occurrences (i.e., the 

predicate occurs more than once within the rule). Such rules are commonly mined from 

transactional data. 

 

Additional relational information regarding the customers who purchased the items (e.g., 

customer age, occupation, credit rating, income, and address) may also be stored. Considering 

each database attribute or warehouse dimension as a predicate, we can therefore mine association 

rules containing multiple predicates such as 

 
Association rules that involve two or more dimensions or predicates can be referred to as 

multidimensional association rules. Rule (7.7) contains three predicates (age, occupation, and 

buys), each of which occurs only once in the rule. Hence, we say that it has no repeated 

predicates. Multidimensional association rules with no repeated predicates are called 

interdimensional association rules. We can also minemultidimensional association rules with 

repeated predicates, which contain multiple occurrences of some predicates. These rules are 

called hybrid-dimensional association rules. An example of such a rule is the following, where 

the predicate buys is repeated: 

 

 
Database attributes can be nominal or quantitative. The values of nominal (or categorical) 

attributes are “names of things.” Nominal attributes have a finite number of possible values, with 

no ordering among the values (e.g., occupation, brand, color). Quantitative attributes are 

numeric and have an implicit ordering among values (e.g., age, income, price). 
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In the first approach, quantitative attributes are discretized using predefined concept hierarchies. 

This discretization occurs before mining. For instance, a concept hierarchy for income may be 

used to replace the original numeric values of this attribute by interval labels such as “0..20K,” 

“21K..30K,” “31K..40K,” and so on. 

In the second approach, quantitative attributes are discretized or clustered into “bins” based on 

the data distribution. These bins may be further combined during the mining process. The 

discretization process is dynamic and established so as to satisfy some mining criteria such as 

maximizing the confidence of the rules mined. 

Mining Quantitative Association Rules 

three methods that can help overcome this difficulty to discover novel association relationships: 

(1) a data cube method, 

(2) a clustering-based method, and 

(3) a statistical analysis method to uncover exceptional behaviors. 

Data Cube–Based Mining of Quantitative Associations 

Alternatively, the transformed multidimensional data may be used to construct a data cube. Data 

cubes are well suited for the mining of multidimensional association rules: They store aggregates 

(e.g., counts) in multidimensional space, which is essential for computing the support and 

confidence of multidimensional association rules. 

 
Mining Clustering-Based Quantitative Associations 

Besides using discretization-based or data cube–based data sets to generate quantitative 

association rules, we can also generate quantitative association rules by clustering data in the 

quantitative dimensions. 

A typical top-down approach for finding clustering-based quantitative frequent patterns is as 

follows. For each quantitative dimension, a standard clustering algorithm (e.g., k-means or a 

density-based clustering algorithm, as described in Chapter 10) can be applied to find clusters in 

this dimension that satisfy the minimum support threshold. For each cluster, we then examine the 

2-D spaces generated by combining the cluster with a cluster or nominal value of another 

dimension to see if such a combination passes 

the minimum support threshold. If it does, we continue to search for clusters in this 2-D region 

and progress to even higher-dimensional combinations. The Apriori pruning still applies in this 

process: If, at any point, the support of a combination does not have minimum support, its further 

partitioning or combination with other dimensions cannot have minimum support either. 



Source: Data Mining Concepts and Techniques, 3rd Edition, Han, Kamber and Pei 
   21 
 

A bottom-up approach for finding clustering-based frequent patterns works by first clustering in 

high-dimensional space to form clusters with support that satisfies the minimum support 

threshold, and then projecting and merging those clusters in the space containing fewer 

dimensional combinations. However, for high-dimensional data sets, finding high-dimensional 

clustering itself is a tough problem. Thus, this approach is less realistic. 

Using Statistical Theory to Disclose Exceptional Behavior 

It is possible to discover quantitative association rules that disclose exceptional behavior, where 

“exceptional” is defined based on a statistical theory. For example, the following association rule 

may indicate exceptional behavior: 

 
This rule states that the average wage for females is only $7.90/hr. This rule is (subjectively) 

interesting because it reveals a group of people earning a significantly lower wage than the 

average wage of $9.02/hr. (If the average wage was close to $7.90/hr, then the fact that females 

also earn $7.90/hr would be “uninteresting.”) 

That is, Rule (7.9) is only accepted if a statistical test (in this case, a Z-test) confirms that with 

high confidence it can be inferred that the mean wage of the female population is indeed lower 

than the mean wage of the rest of the population. 

An association rule under the new definition is a rule of the form: 

 
where the mean of the subset is significantly different from the mean of its complement in the 

database (and this is validated by an appropriate statistical test). 

 

Mining Rare Patterns and Negative Patterns 

Sometimes, however, it is interesting to find patterns that are rare instead of frequent, or patterns 

that reflect a negative correlation between items. These patterns are respectively referred to as 

rare patterns and negative patterns. 

Example. Rare patterns and negative patterns. In jewelry sales data, sales of diamond 

watches are rare; however, patterns involving the selling of diamond watches could be 

interesting. In supermarket data, if we find that customers frequently buy Coca-Cola Classic or 

Diet Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together is 

considered a negative (correlated) pattern. In car sales data, a dealer sells a few fuel-thirsty 

vehicles (e.g., SUVs) to a given customer, and then later sells hybrid mini-cars to the same 

customer. Even though buying SUVs and buying hybrid mini-cars may be negatively correlated 

events, it can be interesting to discover and examine such exceptional cases. 

An infrequent (or rare) pattern is a pattern with a frequency support that is below (or far 

below) a user-specified minimum support threshold. 

There are various ways we could define a negative pattern. We will consider three such 

definitions. 

Definition 7.1: If itemsets X and Y are both frequent but rarely occur together (i.e., sup(X Y) < 

sup.(X)* sup(Y), then itemsets X and Y are negatively correlated, and the pattern X Y is a 

negatively correlated pattern. If sup(X Y)<<sup(X) * sup(Y),then X and Y are strongly 

negatively correlated, and the pattern X Y is a strongly negatively correlated pattern. 
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problem with the definition, however, is that it is not null-invariant. That is, its value can be 

misleadingly influenced by null transactions, where a null-transaction is a transaction that does 

not contain any of the itemsets being examined. 

Definition 7.2: If X and Y are strongly negatively correlated, then 

 
Is this measure null-invariant? 

 
As a third alternative, consider Definition 7.3, which is based on the Kulczynski measure (i.e., 

the average of conditional probabilities). 

 
 

 

 




